Extensions 1→N→G→Q→1 with N=C22≀C2 and Q=C4

Direct product G=N×Q with N=C22≀C2 and Q=C4
dρLabelID
C4×C22≀C232C4xC2^2wrC2128,1031

Semidirect products G=N:Q with N=C22≀C2 and Q=C4
extensionφ:Q→Out NdρLabelID
C22≀C21C4 = C24.28D4φ: C4/C1C4 ⊆ Out C22≀C2168+C2^2wrC2:1C4128,645
C22≀C22C4 = C24.36D4φ: C4/C1C4 ⊆ Out C22≀C2168+C2^2wrC2:2C4128,853
C22≀C23C4 = C2≀C4⋊C2φ: C4/C1C4 ⊆ Out C22≀C2168+C2^2wrC2:3C4128,854
C22≀C24C4 = C25.C22φ: C4/C2C2 ⊆ Out C22≀C216C2^2wrC2:4C4128,621
C22≀C25C4 = C2×C2≀C4φ: C4/C2C2 ⊆ Out C22≀C216C2^2wrC2:5C4128,850
C22≀C26C4 = C4○C2≀C4φ: C4/C2C2 ⊆ Out C22≀C2164C2^2wrC2:6C4128,852
C22≀C27C4 = C23.203C24φ: C4/C2C2 ⊆ Out C22≀C232C2^2wrC2:7C4128,1053
C22≀C28C4 = C23.240C24φ: C4/C2C2 ⊆ Out C22≀C232C2^2wrC2:8C4128,1090
C22≀C29C4 = C23.257C24φ: C4/C2C2 ⊆ Out C22≀C232C2^2wrC2:9C4128,1107

Non-split extensions G=N.Q with N=C22≀C2 and Q=C4
extensionφ:Q→Out NdρLabelID
C22≀C2.C4 = M4(2)⋊21D4φ: C4/C1C4 ⊆ Out C22≀C2168+C2^2wrC2.C4128,646
C22≀C2.2C4 = (C2×C8)⋊D4φ: C4/C2C2 ⊆ Out C22≀C2164C2^2wrC2.2C4128,623
C22≀C2.3C4 = C42.265C23φ: C4/C2C2 ⊆ Out C22≀C232C2^2wrC2.3C4128,1662
C22≀C2.4C4 = M4(2)⋊22D4φ: C4/C2C2 ⊆ Out C22≀C232C2^2wrC2.4C4128,1665
C22≀C2.5C4 = C42.297C23φ: C4/C2C2 ⊆ Out C22≀C232C2^2wrC2.5C4128,1708
C22≀C2.6C4 = C42.298C23φ: C4/C2C2 ⊆ Out C22≀C232C2^2wrC2.6C4128,1709
C22≀C2.7C4 = C42.299C23φ: C4/C2C2 ⊆ Out C22≀C232C2^2wrC2.7C4128,1710
C22≀C2.8C4 = C42.264C23φ: trivial image32C2^2wrC2.8C4128,1661

׿
×
𝔽